airplane is exposed to HIRF environment II, as described in appendix L to this part. - (b) Each electrical and electronic system that performs a function whose failure would significantly reduce the capability of the airplane or the ability of the flightcrew to respond to an adverse operating condition must be designed and installed so the system is not adversely affected when the equipment providing these functions is exposed to equipment HIRF test level 1 or 2, as described in appendix L to this part. - (c) Each electrical and electronic system that performs a function whose failure would reduce the capability of the airplane or the ability of the flightcrew to respond to an adverse operating condition must be designed and installed so the system is not adversely affected when the equipment providing the function is exposed to equipment HIRF test level 3, as described in appendix L to this part. - (d) Before December 1, 2012, an electrical or electronic system that performs a function whose failure would prevent the continued safe flight and landing of an airplane may be designed and installed without meeting the provisions of paragraph (a) provided— - (1) The system has previously been shown to comply with special conditions for HIRF, prescribed under §21.16, issued before December 1, 2007; - (2) The HIRF immunity characteristics of the system have not changed since compliance with the special conditions was demonstrated; and - (3) The data used to demonstrate compliance with the special conditions is provided. [Doc. No. FAA-2006-23657, 72 FR 44025, Aug. 6, 2007] ## INSTRUMENTS: INSTALLATION # § 25.1321 Arrangement and visibility. - (a) Each flight, navigation, and powerplant instrument for use by any pilot must be plainly visible to him from his station with the minimum practicable deviation from his normal position and line of vision when he is looking forward along the flight path. - (b) The flight instruments required by §25.1303 must be grouped on the in- strument panel and centered as nearly as practicable about the vertical plane of the pilot's forward vision. In addition— - (1) The instrument that most effectively indicates attitude must be on the panel in the top center position; - (2) The instrument that most effectively indicates airspeed must be adjacent to and directly to the left of the instrument in the top center position: - (3) The instrument that most effectively indicates altitude must be adjacent to and directly to the right of the instrument in the top center position; and - (4) The instrument that most effectively indicates direction of flight must be adjacent to and directly below the instrument in the top center position. - (c) Required powerplant instruments must be closely grouped on the instrument panel. In addition— - (1) The location of identical powerplant instruments for the engines must prevent confusion as to which engine each instrument relates; and - (2) Powerplant instruments vital to the safe operation of the airplane must be plainly visible to the appropriate crewmembers. - (d) Instrument panel vibration may not damage or impair the accuracy of any instrument. - (e) If a visual indicator is provided to indicate malfunction of an instrument, it must be effective under all probable cockpit lighting conditions. [Amdt. 25–23, 35 FR 5679, Apr. 8, 1970, as amended by Amdt. 25–41, 42 FR 36970, July 18, 19771 #### §25.1322 Flightcrew alerting. - (a) Flightcrew alerts must: - $\left(1\right)$ Provide the flightcrew with the information needed to: - (i) Identify non-normal operation or airplane system conditions, and - (ii) Determine the appropriate actions, if any. - (2) Be readily and easily detectable and intelligible by the flightcrew under all foreseeable operating conditions, including conditions where multiple alerts are provided. - (3) Be removed when the alerting condition no longer exists. ## § 25.1323 - (b) Alerts must conform to the following prioritization hierarchy based on the urgency of flightcrew awareness and response. - (1) Warning: For conditions that require immediate flightcrew awareness and immediate flightcrew response. - (2) Caution: For conditions that require immediate flightcrew awareness and subsequent flightcrew response. - (3) Advisory: For conditions that require flightcrew awareness and may require subsequent flightcrew response. - (c) Warning and caution alerts must: - (1) Be prioritized within each category, when necessary. - (2) Provide timely attention-getting cues through at least two different senses by a combination of aural, visual, or tactile indications. - (3) Permit each occurrence of the attention-getting cues required by paragraph (c)(2) of this section to be acknowledged and suppressed, unless they are required to be continuous. - (d) The alert function must be designed to minimize the effects of false and nuisance alerts. In particular, it must be designed to: - (1) Prevent the presentation of an alert that is inappropriate or unnecessary. - (2) Provide a means to suppress an attention-getting component of an alert caused by a failure of the alerting function that interferes with the flightcrew's ability to safely operate the airplane. This means must not be readily available to the flightcrew so that it could be operated inadvertently or by habitual reflexive action. When an alert is suppressed, there must be a clear and unmistakable annunciation to the flightcrew that the alert has been suppressed. - (e) Visual alert indications must: - (1) Conform to the following color convention: - (i) Red for warning alert indications. - (ii) Amber or yellow for caution alert indications. - (iii) Any color except red or green for advisory alert indications. - (2) Use visual coding techniques, together with other alerting function elements on the flight deck, to distinguish between warning, caution, and advisory alert indications, if they are presented on monochromatic displays that are not capable of conforming to the color convention in paragraph (e)(1) of this section. (f) Use of the colors red, amber, and yellow on the flight deck for functions other than flightcrew alerting must be limited and must not adversely affect flightcrew alerting. [Amdt. 25-131, 75 FR 67209, Nov. 2, 2010] # §25.1323 Airspeed indicating system. For each airspeed indicating system, the following apply: - (a) Each airspeed indicating instrument must be approved and must be calibrated to indicate true airspeed (at sea level with a standard atmosphere) with a minimum practicable instrument calibration error when the corresponding pitot and static pressures are applied. - (b) Each system must be calibrated to determine the system error (that is, the relation between IAS and CAS) in flight and during the accelerated takeoff ground run. The ground run calibration must be determined— - (1) From 0.8 of the minimum value of V_1 to the maximum value of V_2 , considering the approved ranges of altitude and weight; and - (2) With the flaps and power settings corresponding to the values determined in the establishment of the takeoff path under $\S25.111$ assuming that the critical engine fails at the minimum value of V_1 . - (c) The airspeed error of the installation, excluding the airspeed indicator instrument calibration error, may not exceed three percent or five knots, whichever is greater, throughout the speed range, from— - (1) V_{MO} to 1.23 V_{SR1} , with flaps retracted; and - (2) 1.23 V_{SR0} to V_{FE} with flaps in the landing position. - (d) From 1.23 V_{SR} to the speed at which stall warning begins, the IAS must change perceptibly with CAS and in the same sense, and at speeds below stall warning speed the IAS must not change in an incorrect sense. - (e) From V_{MO} to V_{MO} + $\frac{2}{3}$ (V_{DF} V_{MO}), the IAS must change perceptibly with CAS and in the same sense, and at higher speeds up to V_{DF} the IAS must not change in an incorrect sense.